

DOCUMENTO: INF 2294 DISEÑO DE LAS ESTRUCTURAS DE PAVIMENTO PARA CORREDOR VIAL DE GRANADA-SAN CARLOS 2022 V9				
CONSULTOR				
	NOMBRE:	JUAN SEBASTIAN ARREDONDO		
ELABORADO POR:	FIRMA:	JEZWASTAN ASSERBUROV.		
	FECHA:	13 DE DICIEMBRE DE 2022		
	NOMBRE:			
REVISADO POR:	FIRMA:			
	FECHA:			
	NOMBRE:			
APROBADO POR:	FIRMA:			
	FECHA:			
	INTERVEN	NTOR		
	NOMBRE:			
REVISADO POR:	FIRMA:			
	FECHA:			

LISTADO DE TABLAS.

Tabla 1 Valor de coeficiente de desplazamiento en función de la confiabilidad	6
Tabla 2 Coeficientes de ajuste modelo de falla Shell	7
Tabla 3 Sectores homogéneos	
Tabla 4 CBR de diseño sector 1	8
Tabla 5 CBR de diseño sector 2	8
Tabla 6 Volumen de tránsito	12
Tabla 7 Tránsito actualizado	13
Tabla 8 Alternativa sector 1	14
Tabla 9 Alternativa sector 2	14
Tabla 10 Rasante en material granular	22
Tabla 11 Rasante en roca	
Tabla 12 Puntos críticos	24
Tabla 13 Relación CBRS.	25
Tabla 14 Discriminación de longitudes de rasante según material	26
LISTADO DE ILUSTRACIONES.	
Ilustración 1. Diseño de pavimentos método Mecánico	5
Ilustración 2. Estructura de pavimento vía a 10 años con MGTC Sector 1	17
Ilustración 3. Estructura de pavimento vía a 10 años con MGTC para el Sector	r 2 18
ANEXOC // DEDELLES ESTRATIONATIONS & DECLITATION I	ADODATODIO

ANEXOS. (1. PERFILES ESTRATIGRAFICOS, 2. RESULTADOS LABORATORIO ACTUALIZADOS, 3. INFORMACIÓN DE TRÁNSITO CONSORCIO TAYFER, 4. PROCESO CONSTRUCTIVO, 5. FÓRMULA DE TRABAJO DISEÑO SUELO CEMENTO, 5. MEMORIAS DE CÁLCULO, 6. HOJA DE VIDA Y DOCUMENTO SOPORTE ESPECIALISTA ASTE S.A.S)

DISEÑO DE LAS ESTRUCTURAS DE PAVIMENTO PARA CORREDOR VIAL GRANDA – SAN CARLOS CODIGO (K06+591 AL K16+004,30) DEPARTAMENTO DE ANTIOQUIA.

1 CAPITULO 1. INTRODUCCIÓN

Hoy en día, tener una infraestructura vial aceptable y adecuada para el uso de vehículos, implica reducción de costos de operación, mejora los tiempos de traslado y garantiza una dinámica fluida, que se traduce en ganancias económicas para una población en particular y también para una región, municipio y porque no decir, todo un país, pues si sus pequeños engranajes funcionan bien, todo el sistema también lo hará. Es por esto que el Consorcio vías Antioquia 2022, contrató con ASTE SAS, un estudio técnico, para proponer alternativas de pavimentación con material tratados con cemento, basados o con la ayuda de información básica de diseños de pavimentación existente en el mismo corredor y mejorar las condiciones de serviciabilidad de la vía.

El informe contiene una descripción de la metodología de diseño usada para analizar y calcular los espesores que componen la estructura de pavimentos con materiales tratados con cemento y una serie de recomendación que se deben hacer para ejecutar la obra, junto con especificaciones mínimas que deben cumplir los materiales de construcción para dicha alternativa.

2 CAPITULO 2. OBJETIVOS Y ALCANCE

2.1 OBJETIVOS

Realizar una alternativa de diseño de pavimentos con materiales granulares tratados con cemento para el corredor vial Granada – San Carlos, dados como solución para la pavimentación de un tramo homogéneo dividido en dos sectores únicos equivalentes, los cuales se ajusten a la realidad actual de la vía. El proceso de sectorización se debe consultar directamente del estudio existente, elaborado por el consorcio TYFER.

SECTOR 1

Sector 1			
No.	Punto Final		
1	K9+800	K10+055	
2	K12+223	K14+607	
3	K15+160	K15+587	

SECTOR 2)

Sector 2			
No.	Punto inicial	Punto Final	
1	K6+591	K9+800	
2	K10+055	K12+223	
3	K14+607	K15+160	
4	K15+587	K16+004,3	

2.2 ALCANCE

 Comprende la presentación de cálculos bajo criterios propios de esta consultoría, basados en el estudio de suelos y estudio de tránsito de la zona, elaborado por el consorcio TYFER.

3 CAPITULO 3. DESCRIPCIÓN DEL PROYECTO.

Esta versión del informe trabaja los parámetros de diseño estudiados y analizados por el consorcio TYFER, por lo tanto, el informe "CONSULTORÍA PARA LOS ESTUDIOS Y DISEÑOS EN FASE III PARA PAVIMENTACIONES Y ATENCIÓN DE PUNTOS CRÍTICOS EN LOS CORREDORES PRIORIZADOS EN EL MARCO DE LA INTERVENCIÓN DE LA RED VIAL DENTRO DEL DEPARTAMENTO DE ANTIOQUIA", CONTRATO No. 4600010872 DE 2020 ESTUDIO GEOTÉCNICO PARA EL DISEÑO DE LA ESTRUCTURA DEL PAVIMENTO versión 3, forma parte integral de este documento.

4 CAPÍTULO 4. METODOLOGIA DISEÑO DE LAS ESTRUCTURAS DE PAVIMENTO.

4.1 METODOLOGIA DE DISEÑO MECANICA O RACIONAL

La metodología consiste en la predicción o estimación de la evolución en el tiempo de los diferentes daños que se pueden presentar en la estructura y, por ende, presenta estructuras con mayor confiabilidad, ya que se establecerán los consumos de vida, durante el periodo de diseño, que puede soportar la estructura del pavimento.

Los elementos de entrada de entrada al proceso de diseño se refieren a los espesores de cada capa; las propiedades de los materiales que conforman cada una de esas

capas que serán módulos dinámicos o resilientes; el tipo de clima del medio físico que atravesará la carretera, definido por precipitación y temperatura; y el nivel de tránsito vehicular definido en ejes equivalentes.

El procedimiento es iterativo y comienza planteando una estructura de pavimento, con sus materiales y espesores bien definidos, tanto mecánica como geométricamente, para luego ingresar dichos parámetros, a un software que permite calcular las solicitaciones a las que se verá expuesta (esfuerzos y deformaciones), en los niveles de análisis o de interés, en los que se destaca: esfuerzos de tracción en capas rígidas (concreto asfáltico y materiales estabilizados con cemento u otros agentes) para evitar fisuraciones; y deformaciones de compresión en la capa de subrasante, para evitar hundimientos y ahuellamientos en la estructura del pavimento.

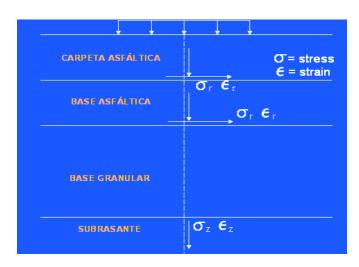


Ilustración 1. Diseño de pavimentos método Mecánico

A continuación, se presenta la metodología para la caracterización de los materiales que compondrán la estructura y los modelos de falla empleados para determinar el comportamiento del pavimento, en términos de consumos de vida, para los periodos de diseño propuestos.

4.2 CARACTERIZACIÓN DINÁMICA DE LA MEZCLA ASFÁLTICA

Se empleará mezcla asfáltica realizada con asfaltos de penetración 60-70, y que se mantenga, con porcentajes de asfalto y de agregados en la mezcla asfáltica MDC-19, son en promedio entre 11% para el asfalto y de 84% para los agregados. La mezcla

asfáltica, una vez colocada in situ, deberá ser compactada, de tal manera que el porcentaje de volumen de vacíos en la mezcla sea de aproximadamente 5% como máximo, para garantizar como mínimo un módulo dinámico de 2823MPa, correspondiente a mezclas densas MDC según especificaciones INVIAS recientes, tal como lo recomienda el consorcio TYFER en su estudio.

Carpeta asfáltica.

Los modelos de falla que se usarán para el chequeo de las estructuras son las estudiadas en la ley de comportamiento a la fatiga de la mezcla asfáltica - criterio de la Shell, modificado según los cambios propuestos para el Shif Factor (K), que luego de una revisión detallada al documento, consideró que un valor aceptable para el análisis de fatiga en el concreto asfáltico corresponde a 5, para tener en cuenta la propagación de fisuras a valores más tolerables, propuesta por Jameson en la preparación de la Guía Austroads en el año 2001

Deformación a tracción unitaria admisible en la carpeta asfáltica: se utilizó la siguiente ley de fatiga.

Fórmula Shell (modificada por Jameson año 2001):

$$Nf = K \left[\frac{6918(0.856Vb + 1.08)}{Emix^{0.36} \varepsilon_{r1}} \right]^{5}$$

Dónde:

 $Vb = porcentaje \ de \ volumen \ de \ asfalto \ en \ la \ mezcla$ $K = factor \ de \ kalage = segun \ la \ tabla$ $Emix = m\'odulo \ de \ la \ mezcla \ asfáltica \ en \ MPa$

 ε_{r1} =Deformación máxima de tracción calculada en la cara inferior de la capa en micrones

Tabla 1 Valor de coeficiente de desplazamiento en función de la confiabilidad

CONFIABILIDAD	FACTOR DE DESPLAZAMIENTO	
80%	4.7	
85%	3.3	
90%	2.0	
95%	1.0	

Fuente: Guía de rehabilitación de pavimentos asfálticos INVIAS

Se empleará entonces, un coeficiente de 2 para una confiabilidad del 90%.

4.3 CARACTERIZACIÓN DE LOS SUELOS DE SUBRASANTE

Deformación a compresión unitaria admisible en la subrasante: se utilizó la siguiente ley de comportamiento para un nivel de confiabilidad del 95%, se tiene que la deformación admisible por el criterio SHELL se calcula como sigue:

$$\varepsilon_{z\,adm} = k_3 * N^{-k4}$$

Donde:

ε_{z adm}: deformación unitaria admisible por compresión en la parte superior de la subrasante en mm/mm.

N: número total de ejes sencillos equivalentes acumulados de 8.2 ton en el carril de diseño y durante el período de diseño.

Tabla 2 Coeficientes de ajuste modelo de falla Shell

MÉTODO	"k ₃ "	"k ₄ "	AHUELLAMIENTO MÁXIMO
SHELL (50% confiabilidad) [ref. 4.3.11]	2.8*10 ⁻²	0.250	Sin información
SHELL (85% confiabilidad) [ref. 4.3.11]	2.1*10 ⁻²	0.250	Sin información
SHELL (95% confiabilidad) [ref. 4.3.11]	1.8*10 ⁻²	0.250	Sin información

Fuente: Guía de rehabilitación de pavimentos asfálticos INVIAS

Del informe "S2 5 Diseño estructura de pavimento 1_(447 pag.)" elaborado por el CONSORCIO TAYFER para la GOBERNACIÓN DE ANTIOQUIA, se tiene que la vía es de un tramo homogéneo, el cual ha sido dividido en dos sectores donde, a través de un proceso estadístico, se le han definido sus propiedades mecánicas y espesores de materiales granulares existentes.

Tabla 3 Sectores homogéneos

	Sector 1			
No.	Punto inicial	Punto Final		
1	K9+800	K10+055		
2	K12+223	K14+607		
3	K15+160	K15+587		

Sector 2			
No.	Punto inicial	Punto Final	
1	K6+591	K9+800	
2	K10+055	K12+223	
3	K14+607	K15+160	
4	K15+587	K16+004,3	

Fuente: Extraído del informe "S2 5 Diseño estructura de pavimento 1_(447 pag.)" elaborado por el CONSORCIO TAYFER

Según TYFER, después de realizar el análisis estadístico para cada sector, se obtiene lo siguiente:

Tabla 4 CBR de diseño sector 1

SECTOR	APIQUE	CBR sumergido	CATEGORÍA DE SUBRASANTE	CBR Diseño
	15	1.5	S 1	
1	24	3.4	\$3	2.75
	25	4.5	\$3	1

Fuente: Extraído del informe "S2 5 Diseño estructura de pavimento 1 (pág. 65)" elaborado por el CONSORCIO TAYFER

Tabla 5 CBR de diseño sector 2

SECTOR	APIQUE	CBR natural	CATEGORÍA DE SUBRASANTE	CBR Diseño
	1	5.99	S 3	
	2	4.5	S 2	
2	3	7.55	S 3	6.79
	4	6.02	S 3	0.79
	5	9.05	S 3	
	6	6.93	S 3	

SECTOR	APIQUE	CBR natural	CATEGORÍA DE SUBRASANTE	CBR Diseño
	7	6.91	\$3	
	8	8.15	\$3	
	9	8.64	S 3	
	10	7.52	\$3	
	11	9.73	\$3	
	12	6.75	S 3	
	13	9.48	S 3	
	14	5.92	\$3	
	16	7.16	S 3	
	17	8.47	S 3	
	18	8.38	S 3	
	19	8.01	S 3	
	20	5.16	S 3	
	21	5.47	\$3	
	22	8.2	S 3	
	23	6.94	S 3	
	33	6.56	S 3	
	34	10.3	S 4	
	35	7.62	S 3	
	38	8.48	S 3	
	39	8.47	\$3	

Fuente: Extraído del informe "S2 5 Diseño estructura de pavimento 1 (pág. 65)" elaborado por el CONSORCIO TAYFER

4.4 CARACTERIZACIÓN DE LOS MATERIALES TRATADOS CON CEMENTO

Teniendo en cuenta las especificaciones técnicas del Instituto Nacional de Vías, para este proyecto se requiere que, a los siete días de maduración, la mezcla de suelo cemento genere una resistencia a la compresión de mínimo 2.1MPa y el módulo de rotura de la mezcla alcance los 0.55MPa.

El diseño entonces, buscará que en la estructura que se proponga, el esfuerzo máximo de tracción en la fibra inferior calculado deberá ser menor o igual a lo siguiente y que la relación de esfuerzos que haya entre el módulo de diseño y el esfuerzo de tracción calculado sea menor al 100%:

$$\begin{split} MR_{SC~dise\~no} &= \frac{MR_{BEC}}{FS} = \frac{0,55}{2,0} \\ MR_{SC~dise\~no} &= 0,275MPa \\ Relacion~de~esfuerzos &= \frac{Esfuerzo~de~tr\'acci\'on~calculado}{0.275MPa} < 100\%~cumple \end{split}$$

Teniendo en cuenta la información de los anexos, esta consultoría, considera que, los criterios de exploración de campo y de laboratorio, es congruente con el Manual de diseño de pavimentos para vías con bajos y medios y altos volúmenes de tránsito del INVIAS por tanto se considera apropiada, ya que se encuentra la cantidad suficiente de pruebas y ensayos para caracterizar los suelos del perfil estratigráfico que componen las vías.

5 CAPÍTULO 5. DISEÑO DE MEZCLAS

5.1 DISEÑO DE MEZCLAS ASFÁLTICAS PARA PAVIMENTOS FLEXIBLES.

Este material estructural que es elaborado en planta, debe cumplir con estándares de calidad, y debe asegurar que la producción del concreto asfáltico sea resistente a la deformación plástica bajo la acción del tránsito, resistir la desintegración debido al tránsito y al clima, debe ser flexible para que la mezcla se deforme elásticamente sin que se agriete, ni se rompa debido a las pequeñas deflexiones que le imparte el tránsito a la estructura en sí, así como también debe ser resistente a la fatiga para soportar las deformaciones repetidas ocasionadas por el paso de cargas inferiores a

las de rotura cuyos efectos se acumularán hasta el agotamiento de la mezcla; además, debe proporcionar seguridad al deslizamiento bajo condiciones desfavorables de alta velocidad y presencia de agua; la mezcla a su vez también debe ser impermeable, para ejercer resistencia al paso del agua y al aire, visto desde el punto de vista de la durabilidad, porque se altera la estabilidad y la adherencia árido ligante.

Además, la mezcla proporcionada por la planta debe ser fácil de trabajar, para que el extendido, conformación y compactación, no se dificulte cuando se estén ejecutando los trabajos de pavimentación.

La mezcla que se va a utilizar para conformar la carpeta de rodadura será del tipo MDC-19 (mezcla densa en caliente tipo 19), procesada en una Planta de Asfalto.

5.2 MATERIALES TRATADOS CON CEMENTO.

Según la PCA El suelo-cemento: es una mezcla íntima de suelo, convenientemente pulverizado, con determinadas porciones de agua y cemento que se compacta y cura para obtener mayor densidad. Cuando el cemento se hidrata la mezcla se transforma en un material duro, durable y rígido. Se le usa principalmente como base en los pavimentos de carreteras, calles y aeropuertos.

Regularmente, el porcentaje de cemento puede variar entre el 3 al 12% dependiendo del tipo de suelo, entre más fracción granular haya, menos porcentaje de cemento se necesitará para alcanzar la resistencia requerida.

Para este proyecto se requiere que, a los siete días de maduración, la mezcla de suelo cemento genere una resistencia a la compresión de mínimo 2.1MPa y el módulo de rotura de la mezcla alcance los 0.55MPa. El diseño entonces, deberá buscar un porcentaje de cemento que alcance como mínimo los anteriores requisitos de resistencia y además de durabilidad que se exigen por las normas de construcción.

- El suelo tratado con cemento deberá cumplir con las normas o especificaciones de construcción INVIAS artículo 350 y la especificación particular de la Gobernación de Antioquia "Material Granular Tratado con Cemento MGTC" del año 2017.
- El diseño del suelo cemento, deberá garantizar durabilidad y resistencia, para conformar un suelo cemento tipo SC-R.
- El diseño del suelo cemento deberá garantizar una resistencia a la compresión mínima de 2.1MPa a los 7 días de maduración.
- El suelo tratado con cemento, para conformar la capa de MGTC, se puede obtener por dos vías: la primera mediante la mezcla del granular existente y la adición de material granular (en caso que en la vía no se disponga la cantidad

suficiente para conformar la capa) y la segunda implica la colocación de un material adicional tipo granular para estabilizar, ya que se puede suceder que se deba agregar material para poder conformar la capa y poder nivelar la sección, tanto longitudinal como transversalmente o que, debido al análisis y/o cálculos, se requiera dejar la capa de material existente para mejoramiento.

6 CAPÍTULO 6. EVALUACIÓN DEL TRÁNSITO Y CARGAS DE DISEÑO

Las cargas móviles del tránsito producen en el pavimento y en el suelo de apoyo deformaciones elásticas y plásticas cuyas magnitudes dependen tanto del peso como de la frecuencia de su aplicación.

El deterioro de los pavimentos, sin embargo, no ocurre bajo la aplicación de una sola carga. Es la aplicación repetida de ellas la que va acumulados efectos hasta producir la falla de la estructura. Los materiales de comportamiento elástico, como lo es la capa de rodadura en concreto asfaltico que trabajan a bajas temperaturas, suelen fallar por fatiga elástica que se manifiesta superficialmente inicialmente en fisuras que luego evolucionan a grietas conocidas con el nombre de "piel de cocodrilo", mientras que los materiales granulares y la subrasante suelen acumular en el tiempo deformaciones permanentes que se traducen en ahuellamientos. En ambos casos el resultado práctico es el mismo: incapacidad de la estructura para seguir prestando el servicio funcional y estructuralmente adecuado a las exigencias del usuario y de las cargas respectivamente, llegando a la necesidad del refuerzo o rehabilitación y en el peor de los casos a una reconstrucción.

Para la información de tránsito estudiada y actualizada, no se tiene observaciones y se considera valida. Se presentará, además, la proyección del tránsito, para obtener el tránsito para un periodo de diseño de 10 años y proponer alternativas de pavimento en ese periodo de diseño.

Con la proyección realizada para los periodos de diseño propuestos, para determinar el tránsito de diseño en ejes equivalentes de 8.2Ton, se utilizaron los factores de equivalencia recomendados por el Instituto Nacional de Vías INVIAS en su manual de diseño para vías con bajos volúmenes de tránsito, teniendo en cuenta que la sección de la vía, máximo tiene un ancho de 6.0m, por lo que el factor de distribución de tránsito considerado fue del 100% y el factor de distribución en el carril de diseño, será del 50%.

A continuación, se muestra la formulación estudiada para determinar el tránsito de diseño en ejes equivalentes, para diferentes periodos de diseño, en este caso 5 y 10 años.

$$Tr\'{a}nsito\ normal\ x\ a\~{n}os = \sum (vehiculo_i * FE_i)$$

Donde:

Tránsito normal x años es el tránsito acumulado para el periodo de diseño X vehiculo, es el tipo vehículo, llámese bus, C2P, C2G, C3-C4, C5 o C6

 FE_i es el factor de equivalencia de carga para el vehículo i, llámese bus, C2P, C2G, C3-C4, C5 o C6

El último paso, es tomar el tránsito normal y asegurarlo, para lo cual, tendremos en cuenta en cuenta que no se posee una serie histórica actualizada o conteos actualizados durante toda la semana, por lo que se asumirá una distribución normal de esta variable para la diferencia entre el tránsito real y el estimado, que requiere de un ajuste por la razón antes mencionada, para proporcionar una confianza o asegurar la variable tránsito así:

Tránsito normal asegurado x años = $(10^{0.05*zr})Tr$ ánsito normal x años

Donde:

Tránsito normal asegurado x años: Es el tránsito equivalente corregido para proporcionar un determinado nivel de confianza, en este caso, del 90%.

Zr: El correspondiente a una distribución normal y a la confiabilidad deseada. Para el caso del 90% (según anexos, la confiabilidad es del 98%, pero esta consultoría tomará un factor de seguridad al 90%, más adecuado para vías rurales) de confiabilidad el valor de Zr es 1.282, también se consideró un 10% de tránsito adicional como tránsito de construcción durante el primer año de servicio.

TIPO DE VEHÍCULO	VEH EQUIVALENTES	Porcentaje
Liviano	479	92.2%
Moto	553	92.2%
Bus	5	0.4%
Camiones	83	7.4%
Camión Pequeño	21	25.3%
Camión grande	10	12%
C3	52	62.7%
C5	0	0.00%
Total	1120	100.00%

PESO (T)	CARGA DE REFERENCIA	FACTOR EQUIVALENCIA
BRUTO (T)	FLEXIBLE	FLEXIBLE
4	6.6	0.13
4.5	6.6	0.22
5	6.6	0.33
6	6.6	0.68
6.3	6.6	0.83
7.5	6.6	1.67
8.2	8.2	1.00
10	8.2	2.21
11	8.2	3.24
12.5	8.2	5.40
14	15	0.76
17	15	1.65
21.5	15	4.22
22	15	4.63
23.5	23	1.09
24	23	1.19

Tabla 6 Volumen de tránsito

Fuente: Extraído del informe "S2 5 Diseño estructura de pavimento 1_(447 pag.)" elaborado por el CONSORCIO TAYFER

Tabla 7 Tránsito actualizado

VEHÍCULOS	%	Número de Vehículos Diarios	Factor Daño flexible	Tránsito equivalente diario	Número de Vehículos acumulados
VEHÍCULOS	100.0%	1120	-	-	-
AUTOS	92.2%	1032	-	-	-
BUS NORMAL	0.4%	5	4.24	21	13213

CAMIONES	7.4%	83	-	-	-			
2P	25.3%	21	1.33	28	57127			
2G	12.0%	10	36	125533				
С3	62.7%	52	5.31	276	141457			
C4	0.0%	0	5.39	0	0			
C5	0.0%	0	9.58	0	0			
	TRÁNSITO EQUIVA		361	TOTALES				
TRÁNS	ITO EQUIVALENTE	TRÁNSITO EQUIVALENTE TOTAL ACUMULADO						

Fuente: Extraído del informe "S2 5 Diseño estructura de pavimento 1_(447 pag.)" elaborado por el CONSORCIO TAYFER

A partir de la información de tránsito proyectada se tiene que el tránsito de diseño será de 1.13x10⁶ ejes equivalentes, para un periodo de diseño de 10 años en el carril de diseño.

7 CAPÍTULO 7. DISEÑO DE LAS ESTRUCTURAS DE PAVIMENTO CON MATERIAL TRATADO CON CEMENTO.

Tabla 8 Alternativa sector 1

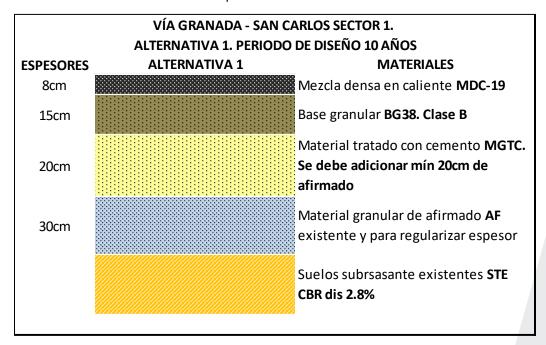
			CADACT	EDISTICAS DE LOS	MATERIAL	ES DE LA ESTRIL	CTLIDA DEL D	AVIMENTO			CARACTERISTICAS DE LOS MATERIALES DE LA ESTRUCTURA DEL PAVIMENTO								
	ALTERNATIVA PAVIMENTO CON MGTC SECTOR 1.																		
	CARPETA	ASFÁLTICA		BASE GRAN	IULAR	SUELO CEMEI	NTO MGTC	MATERIAL GI	RANULAR	SUBRASA	NTE								
%Vb	11,03	ECDECOD ()	0.0	ECDECOD ()	15.0	ECDECOD ()	20.0	ECDECOD ()	20.0	CDD (0/)	2.0								
%Va	5,00	ESPESOR (cm)	8,0	ESPESOR (cm)	15,0	ESPESOR (cm)	20,0	ESPESOR (cm)	30,0	CBR (%)	2,8								
К	2,00	E (kg/cm2)	28230	E (kg/cm2)	2500	E (kg/cm2)	5000	E (kg/cm2)	856	E (kg/cm2)	342								
С		μ	0,35	μ	0,45	μ	0,25	μ	0,45	μ	0,45								
	RESULTADOS DE CÁLCULOS EN LA ESTRUCTURA EN PUNTOS DE INTERES																		
Esfuerzo ot máx	imo (Mpa)	9,58E-01		Esfuerzo σc máximo (Mpa) 1,			1,22E-01	Esfuerzo σc m	aximo (Mpa)	1,14E-02									
Deformación	Et máxima	2,70E-04			Deforma	ción Ec máxima	2,12E-04	Deformación Ec máxima		3,93E-04									
Deformación Et	admisible	2,97E-04		Est	uerzo σc a	dmisible (Mpa)	2,75E-01	Deformación	Ec admisible	5,52E-04									
						0													
CARPI	ETA ASFÁLT	ГІСА		SUELO	CEMENTO	MGTC			SUBRASA	ANTE									
REPETICIONES E	SPERADAS	1,13E+05			REPETICION	IES ESPERADAS	1,13E+06	REPETICIONE	S ESPERADAS	1,13E+0	06								
REPETICIONES A	DMISIBLES	1,75E+06		REPETICIONES ADMISIBLES			7,91E+06	REPETICIONES	S ADMISIBLES	4,39E+0	06								
	CONSUMO	6%		CONSUM			44%		CONSUMO	26%									
OBS	ERVACIÓN	ОК			·	OBSERVACIÓN	ОК	0	BSERVACIÓN	ОК									

Tabla 9 Alternativa sector 2

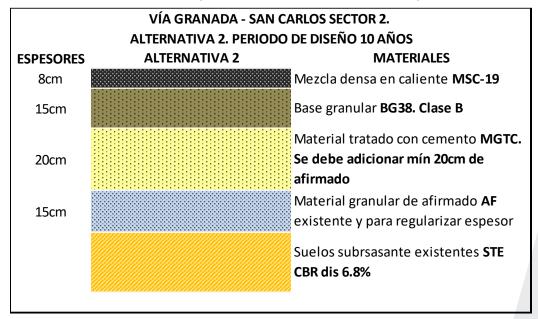
			CARACT	ERISTICAS DE LOS	MATERIAI	LES DE LA ESTRU	CTURA DEL P	AVIMENTO				
	ALTERNATIVA PAVIMENTO CON MGTC SECTOR 2.											
	CARPETA ASFÁLTICA			BASE GRAN	IULAR	SUELO CEMEN	NTO MGTC	MATERIAL	GRANULAR	SUBRASANTE		
%Vb	11,03	ESPESOR (cm)	8,0	ESPESOR (cm)	15,0	ESPESOR (cm)	20,0	ESPESOR (cm)	15,0	CBR (%)	6,8	
%Va	5,00	ESPESOR (CIII)	8,0	ESPESOR (CIII)	15,0	ESPESOR (CIII)	20,0	ESPESOR (CIII)	15,0	CBR (%)	0,0	0
К	2,00	E (kg/cm2)	28230	E (kg/cm2)	2500	E (kg/cm2)	5000	E (kg/cm2)	1084	E (kg/cn	1 2) 609	19
С		μ	0,35	μ	0,45	μ	0,25	μ	0,45		μ 0,4	1 5
	RESULTADOS DE CÁLCULOS EN LA ESTRUCTURA EN PUNTOS DE INTERES											
Esfuerzo ot máxi	mo (Mpa)	9,40E-01		Esfuerzo σc máximo (Mpa)			1,29E-01	Esfuerzo σc	máximo (Mpa)	2,12E-02		
Deformación 8	Et máxima	2,72E-04			Deforma	ción Ec máxima	1,93E-04	Deformación Ec máxima		3,45E-04		
Deformación Et	admisible	2,97E-04		Esf	uerzo σc a	dmisible (Mpa)	2,75E-01	Deformacio	ón Ec admisible	5,	52E-04	
						0						
CARPE	TA ASFÁLI	TICA		SUELO	CEMENTO	MGTC			SUBRASA	ANTE		
REPETICIONES ES	SPERADAS	1,13E+05		-	REPETICION	IES ESPERADAS	1,13E+06	REPETICIONES ESPERADAS		1,	13E+06	
REPETICIONES AD	OMISIBLES	1,69E+06		REPETICIONES ADMISIBLES			7,07E+06	REPETICION	IES ADMISIBLES	7,	41E+06	
С	ONSUMO	7%		CONSUM			47%		CONSUMO		15%	
OBSE	RVACIÓN	ОК				OBSERVACIÓN	OK		OBSERVACIÓN		ОК	

Dadas las tablas 8 y 9; se pueden observar los diferentes análisis realizados por método mecanicista con los esfuerzos máximos y admisibles en la estructura y sus respectivos consumos por capa, con el fin de que la alternativa comprenda las mismas características del informe inicial elaborado por TYFER. Estos valores de esfuerzos calculados sirven para calcular las repeticiones admisibles, las repeticiones admisibles se comparan con las repeticiones esperadas (del estudio de Tránsito); si las repeticiones admisibles son menores a las esperadas, el diseño no cumple y al contrario si cumple; lo que se busca, es que el diseño quede con repeticiones similares, para que la relación admisibles/esperadas, sea menor a 1 o al 100%. A lo anterior se le conoce como ley de Miner o consumo de vida, lo cual aplica para diseños por racional.

Para complementar lo anterior, se adjuntan los cálculos de los esfuerzos con sus respectivos diagramas a continuación:


	oto		P	AVIMEN	NTACIÓ	N VÍA G	RANAD	A - SAN	CARLO	S			
	but			ALTER	NATIVA P	AVIMENT	O CON M	GTC SECT	OR 1.				
ASI	PHALT TECHNOLO												
	ESTRUCTU		D-1141-					CAR	GAS	24212			
CAPA	ESPESOR	Módulo elasticidad	Relación de Poisson				CARGA NÚMERO	CARGA	PRESIÓN	RADIO CARGA			
	(m)	(Mpa)					NUIVIERU	(Kn)	(Mpa)	(m)			
1	8,0E-02	2,8E+03	0,35	CA			1	2,00E+01	5,55E-01	1,08E-01			
2	1,5E-01	2,5E+02	0,45	BG			2	2,00E+01	5,55E-01	1,08E-01			
3	2,0E-01	5,0E+02	0,25	BGTC									
4	3,0E-01	8,6E+01	0,45	AF									
5		3,4E+01	0,45	STE									
POSICIÓN	CAPA	X(COOR)	Y(COOR)	Z(COOR)	EC	FUERZOS (MI	201	DEEOBN	ACIONES (Mi	icronoc)			
NUMERO	NUMERO	(m)	(m)	(m)	XX	YY	ZZ	XX	YY	ZZ			
1	1	0,00E+00	0,00E+00	7,99E-02	-4,76E-01	2,58E-01	1,59E-01	-2,25E+02	1,33E+02	8,50E+01			
2	1	0,00E+00	-1,62E-01	7,99E-02	-9,32E-01	-7,79E-01	2,54E-01	-2,70E+02	-1,96E+02	3,08E+02			
3	3	0,00E+00	0,00E+00	4,30E-01	-1,22E-01	-1,02E-01	3,05E-02	-2,12E+02	-1,62E+02	1,76E+02			
4	3	0,00E+00	-1,62E-01	4,30E-01	-1,13E-01	-9,07E-02	2,78E-02	-1,99E+02	-1,41E+02	1,61E+02			
5	5	0,00E+00	0,00E+00	7,30E-01	1,83E-04	5,39E-04	1,14E-02	-1,55E+02	-1,40E+02	3,32E+02			
6	5	0,00E+00	-1,62E-01	7,30E-01	1,15E-04	6,60E-04	1,10E-02	-1,53E+02	-1,29E+02	3,17E+02			
		IR PUNTOS							еје у				
1	0	0	.,	1									
2	0	-0,162	0,0799	1			0,162						
3	0	0	-,	3		0,324			1				
4	0	-0,162	0,4299	3		.,-	-0,162				eje x		
5	0	0	-,	5			-,		2				
6	0	-0,162	0,7301	5									
		DEC:											
	4.705.00		SFUERZOS	0.005.07	4 405 00	, anno							Mpa
1	-4,76E+09	2,58E+09	1,59E+09	8,99E-07	,	0,0000e+00					-4,76E+05	2,58E+05	1,59E+0
3	-9,32E+09	-7,79E+09	2,54E+09	2,80E-07	-2,25E-08	-1,23E+08 0.0000e+00					-9,32E+05	-7,79E+05	2,54E+0
4	-1,22E+09 -1,13E+09	-1,02E+09 -9,07E+08	3,05E+08 2,78E+08	2,43E-08 4,16E-08	-6,85E-09 -1,22E-08	.,					-1,22E+05 -1,13E+05	-1,02E+05 -9,07E+04	3,05E+0- 2,78E+0-
5	-1,13E+09 1,83E+06	5,39E+06	2,78E+08 1,14E+08	4,16E-08 4,36E-10	,	0,0000e+00					-1,13E+05 1,83E+02	-9,07E+04 5,39E+02	2,78E+0
6	1,15E+06	6,60E+06	1,14E+08 1,10E+08	1,00E-09	-1,19E-09 -2,81E-09	-					1,05E+02	6,60E+02	1,14E+0
0	1,130+00	0,000=00	1,101+08	1,001-09	-2,011-09	-1,33E+U/					1,131+02	0,000	1,102+0
		PEGAR DEF	ORMACIONES	5									
1	-2,25E+00	1,33E+00	8,50E-01	8,77E-16	-4,37E-17	0,0000e+00					-2,25E-04	1,33E-04	8,50E-0
2	-2,70E+00	-1,96E+00	3,08E+00	2,73E-16	-2,20E-17	-1,20E-01					-2,70E-04	-1,96E-04	3,08E-0
3	-2,12E+00	-1,62E+00	1,76E+00	1,24E-16	-3,49E-17	0,0000e+00					-2,12E-04	-1,62E-04	1,76E-0
4	-1,99E+00	-1,41E+00	1,61E+00	2,12E-16	-6,20E-17	-3,37E-01					-1,99E-04	-1,41E-04	1,61E-04
5	-1,55E+00	-1,40E+00	3,32E+00	3,77E-17	-1,03E-16	0,0000e+00					-1,55E-04	-1,40E-04	3,32E-04
6	-1,53E+00	-1,29E+00	3,17E+00	8,67E-17	-2,43E-16	-1,32E+00					-1,53E-04	-1,29E-04	3,17E-0

	ct		Р	AVIMEN	NTACIÓ	N VÍA G	RANAD	A - SAN	CARLO	S			
	Du			ALTER	RNATIVA I	PAVIMEN	O CON N	IGTC SECT	OR 2				
	ESTRUCTU	RA						CAR	GAS				
САРА	ESPESOR	Módulo elasticidad	Relación de Poisson				CARGA	CARGA	PRESIÓN	RADIO CARGA			
	(m)	(Mpa)					NÚMERO	(Kn)	(Mpa)	(m)			
1	8,0E-02	2,8E+03	0,35	CA			1	2,00E+01	5,55E-01	1,08E-01			
2	1,5E-01	2,5E+02	0,45	BG			2	2,00E+01	5,55E-01	1,08E-01			
3	2,0E-01	5,0E+02	0,25	BGTC									
4	1,5E-01	1,1E+02	0,45	AF									
5		6,1E+01	0,45	STE									
POSICIÓN	CAPA	X(COOR)	Y(COOR)	Z(COOR)		FUERZOS (MF	•		ACIONES (Mi				
NUMERO	NUMERO	(m)	(m)	(m)	XX	2 525 24	ZZ	XX	YY	22			
1	1	0,00E+00	0,00E+00	7,99E-02	-4,83E-01	2,52E-01	1,60E-01	-2,26E+02	1,32E+02	8,70E+01			
3	1	0,00E+00	-1,62E-01	7,99E-02	-9,40E-01	-7,87E-01	2,55E-01	-2,72E+02	-1,98E+02	3,10E+02			
4	3	0,00E+00 0,00E+00	0,00E+00 -1,62E-01	4,30E-01 4,30E-01	-1,09E-01 -1,00E-01	-9,03E-02 -7,91E-02	3,42E-02 3,13E-02	-1,93E+02 -1,80E+02	-1,46E+02 -1,26E+02	1,71E+02 1,55E+02			
5	5	0,00E+00	0.00E+00	5,80E-01	7.01E-05	1,13E-03	2,12E-02	-1,67E+02	-1,26E+02 -1,41E+02	3.45E+02			
6	5	0,00E+00	-1,62E-01	5,80E-01	1,64E-04	1,13E-03 1,62E-03	1,98E-02	-1,57E+02 -1,58E+02	-1,41E+02 -1,23E+02	3,45E+02 3,18E+02			
-		0,002.00	1,022 01	5,002 02	2,012 01	1,022 00	2,302 02	2,502 - 02	1,202.02	5,102.02			
	PEGA	R PUNTOS							eje y				
1	0	0	0,0799	1									
2	0	-0,162	0,0799	1			0.452						
3	0	0	0,4299	3		0.224	0,162		1				
4	0	-0,162	0,4299	3		0,324	0.463				eje x		
5	0	0	0,5801	5			-0,162		2				
6	0	-0,162	0,5801	5			•						
		PEGAR E	SFUERZOS								Мра	Мра	Мра
1	-4,83E+09	2,52E+09	1,60E+09	8,99E-07	-4,41E-08	0,0000e+00					-4,83E+05	2,52E+05	1,60E+05
2	-9,40E+09	-7,87E+09	2,55E+09	2,80E-07	-2,07E-08						-9,40E+05	-7,87E+05	2,55E+05
3	-1,09E+09	-9,03E+08	3,42E+08	-	,	0,0000e+00					-1,09E+05	-9,03E+04	3,42E+04
4	-1,00E+09	-7,91E+08	3,13E+08		-1,33E-08						-1,00E+05	-7,91E+04	3,13E+0
5	7,01E+05	1,13E+07	2,12E+08			0,0000e+00					7,01E+01	1,13E+03	2,12E+0
6	1,64E+06	1,62E+07	1,98E+08	2,68E-09	-5,94E-09	-3,24E+07					1,64E+02	1,62E+03	1,98E+04
		DECAR DEC	ORMACIONES										
1	-2,26E+00	1,32E+00	8,70E-01		-4 30F-17	0,0000e+00					-2,26E-04	1,32E-04	8,70E-05
2	-2,72E+00	-1,98E+00	3,10E+00	-	-4,30E-17 -2,02E-17	-					-2,72E-04	-1,98E-04	3,10E-04
3	-1,93E+00	-1,46E+00	1,71E+00			0,0000e+00					-1,93E-04	-1,36E-04 -1,46E-04	1,71E-04
4	-1,80E+00	-1,46E+00	1,55E+00		-6,76E-17	-					-1,80E-04	-1,46E-04	1,71E-04
			-		,							,	3,45E-04
5	-1,67E+00	-1,41E+00	3,45E+00	6,30E-17	-1,39E-16	0,0000e+00					-1,67E-04	-1,41E-04	3,43E=U4


Ilustración 2. Estructura de pavimento vía a 10 años con MGTC Sector 1

• La alternativa comprende la regularización del material granular existente (nivelación y Re compactación), con el fin de encontrar una cama de apoyo para la instalación de 50 centímetros de material granular según norma especificaciones de construcción INVIAS artículo 350 o en su defecto la especificación particular de la Gobernación de Antioquia "Material Granular Tratado con Cemento MGTC" del año 2017, donde 30 de estos corresponden a una mezcla entre material granular existente y material granular importado, de los cuales se estabilizarán 20 centímetros (según formula de trabajo), donde posteriormente se instalará, bajo criterio convenido por las partes (gobernación de Antioquia e Interventoría) una capa de material granular de base tipo BG38 clase B de 15cm para mitigar la aparición de fisuras por retracción del MGTC en la capa de rodadura; la capa de rodadura será de 8 centímetros de mezcla densa MDC-19.

Ilustración 3. Estructura de pavimento vía a 10 años con MGTC para el Sector 2

• La alternativa comprende la regularización del material granular existente (nivelación y Re compactación), con el fin de encontrar una cama de apoyo para la instalación de 35 centímetros de material granular según norma especificaciones de construcción INVIAS artículo 350 o en su defecto la especificación particular de la Gobernación de Antioquia "Material Granular Tratado con Cemento MGTC" del año 2017, donde 15 de estos corresponden a una mezcla entre material granular existente y material granular importado, de los cuales se estabilizarán 20 centímetros (según formula de trabajo), donde posteriormente se instalará, bajo criterio convenido por las partes (gobernación de Antioquia e Interventoría) una capa de material granular de base tipo BG38 clase B de 15cm para mitigar la aparición de fisuras por retracción del MGTC en la capa de rodadura; la capa de rodadura será de 8 centímetros de mezcla densa MDC-19.

7.1 RECOMENDACIONES.

Para las estructuras propuestas con alternativas en suelo – cemento o material granular tratado con cemento MGTC:

- El suelo tratado con cemento deberá cumplir con las normas o especificaciones de construcción INVIAS artículo 350 y la especificación de la Secretaría de Infraestructura Física de la gobernación de Antioquia SIF001-17.
- Para las estructuras de pavimento con periodos de 10 años, la capa de material granular existente, se deberá dejar como mínimo en los espesores que se recomienda y se muestran en las ilustraciones 2 y 3. Para conformar la capa de material granular tratado con cemento, según sea la unidad homogénea, se deberá adicionar o completar para el sector I 15cm y para el sector II 30cm de material granular de la zona o similar al existente hoy en día a lo largo y ancho de toda la sección de vía a pavimentar.
- Previamente se deberá entonces, para poder construir las alternativas de pavimento con MGTC propuestas, conformar el material granular existente y nivelarlo, para luego colocar una nueva capa de material granular, en el espesor según la alternativa elegida, que será la capa a la que se le añadirá cemento para estabilizar.

En resumen:

Para periodos de 10 años, la capa de material granular existente se deberá conformar, retirar los sobretamaños y recompactar al 95% de la densidad máxima de laboratorio. Seguido se colocará, extenderá y nivelará una capa mínima de 20cm de material granular, que será la capa para estabilizar o tratar con cemento.

- Se extenderá el cemento que resulte de la dosificación.
- Con ayuda de la maquina recicladora, se combinará el material granular y el cemento.
- El diseño del suelo cemento, deberá garantizar durabilidad y resistencia, para conformar un suelo cemento tipo SC-R.
- El diseño del suelo cemento deberá garantizar una resistencia a la compresión mínima de 2.1MPa a los 7 días de maduración.
- Una vez conformada la capa de suelo cemento o MGTC, compactada y verificada, se procederá a imprimar para luego colocar la capa de rodadura, que en este caso será una mezcla densa en caliente tipo MDC-19.

Para realizar el tratamiento del suelo granular a tratar con cemento, se requiere hacer lo siguiente:

- Colocar la capa de material granular que permita garantizar que, cuando se esté estabilizando, se conforme una capa con espesor pleno compactado, igual o mayor al recomendado según la unidad o zona de diseño y el periodo de diseño seleccionado.
- Verificado que el espesor a tratar, sea el de diseño, se procederá a realizar la mezcla con el cemento.
- Previamente se debe rectificar o verificar el contenido de humedad, para saber si se debe adicionar agua para la pre envuelta (se recomienda que la humedad de pre envuelta, este por debajo, dos o tres puntos porcentuales de la óptima de compactación) con el cemento y para su compactación. En caso que haya exceso, se deberá, con la ayuda de la motoniveladora, extender y abrir el material para que se pierda humedad.
- Conformada la capa, se procederá al extendido del cemento. Esto se puede hacer manual (sacos de cemento de 50Kg), según el porcentaje de cemento recomendado, ayudado con rastrillos o cepillos metálicos para extenderlos sobre toda la sección de la vía.
- Una vez esparcido el cemento, se procederá a realizar la mezcla con maquinaria adecuada, para finalmente adicionar el agua para compactación y densidad óptima, sellado y curado de la capa.
- A continuación, se incrementa la humedad, hasta alcanzar la óptima de compactación mediante riegos o pasadas de un carro tanque; cada pasada del carro tanque, implica una nueva mezcla del material, para que el cemento, el agua y el material a estabilizar, queden íntimamente mezclados en la totalidad del espesor y ancho de la calzada.
- Una vez el material granular haya alcanzado la humedad óptima y ha sido totalmente mezclado, debe compactarse de inmediato. El porcentaje de compactación, deberá ser mayor al 95% de la densidad máxima determinada sobre una muestra de la mezcla húmeda toma en campo.
- La densidad debe ser tomada in situ inmediatamente después de terminar la compactación. No es válido tomar densidad luego que el cemento haya fraguado ya que se ha endurado, por ningún motivo se puede tomar densidades después de cuatro horas de terminado la labor de compactación.
- El tiempo máximo del que se dispone entre aplicación del cemento y la compactación deberá ser como máximo de 4 horas, pero, si la temperatura ambiente supera los 30°c, este tiempo se reduce a máximo 3 horas.
- Así mismo, el tiempo de compactación deberá ser lo más breve posible (la operación en sí) y no deberá exceder de 2 horas en un mismo sitio, esto debido a que puede destruir uniones moleculares producidas por el fraguado o lo que es lo mismo, perder resistencia.

- Para mantener un adecuado curado del cemento y garantizar que alcance su potencial y su resistencia, se recomienda adicionar agua durante siete (7) días o mantener húmeda la capa con riegos a través de aspersores agrícolas o con materiales que permitan y mantengan la humedad en la capa estabilizada.
- Entre los controles mínimos que deben llevarse en obra, están los de verificar constantemente los contenidos de humedad del material (existente + adicionado), para poder realizar el mezclado, luego la humedad de pre envuelta y luego verificar la humedad optima de compactación.
- Se recomienda también, recolectar muestras de la mezcla –material granular + cemento– y hacer cilindros para verificar la resistencia de diseño sobre muestras de campo.

7.2 LIMITACIONES.

Las estructuras de pavimento que se recomiendan en este informe parten del análisis geotécnico, resultados de laboratorio y análisis de la información de tránsito de los estudios realizado por Consorcio TYFER, anexo a este informe, por tanto, dicho documento y el resto de información disponible que se menciona en ese documento formará parte integral de este informe y sus recomendaciones prevalecen para garantizar las alternativas con material granular tratado con cemento que remienda ASTE.

El presente documento no tiene un alcance hidráulico, por tanto, se recomienda tener el concepto de un especialista en esa área para que de recomendaciones de drenaje superficial y subsuperficial para lograr mantener las estructuras de pavimento estables en el periodo de diseño propuestos.

Así mismo, el presente documento no tiene en alcance geométrico y las suposiciones de espesores de los materiales granulares existentes, están en función de los apiques efectuados, por tanto, es de vital importancia realizar un diseño de rasantes, para garantizar que los espesores y las recomendaciones que a los materiales existentes se les da, se puedan verificar en campo, ya que, de dicho espesor existente, parten las recomendaciones de colocar material granular. Por ejemplo, cabe en la posibilidad que, para poder garantizar un peraltado y pendientes adecuadas de la vía, se deban realizar cortes, lo que modificará la rasante existente y sobre todo el espesor de material existente, lo que modificará el espesor de material a adicionar.

En ese sentido, para que se pueda verificar las condiciones de diseño, se deberá contemplar una rasante por encima de la existente, evitando realizar muchos cortes.

7.3 ANEXO DE RELACIONES, REGISTROS, MEDICIONES Y ANÁLISIS

		ONES, REGISTROS, MEDICIONES Y ANAL ASANTE EN MATERIAL GRANULAR	
RECORRIDO	RECORRIDO	F0T00D45(40	
ASTE S.A.S Y AIM S.A.S	CONTRATISTA E INTERVENTORÍA	FOTOGRAFÍAS	OBSERVACIONES
AIN J.A.J	INTERVENTORIA		
K6+550 - K10+200	K6+591 - K10+150		Material en buenas condiciones
K10+560 - K15+170	K10+570 - K15+150		Material en buenas condiciones
K15+830	K15+850	18/06/2022 9:36:59 a. m. 28.4 W. Via San Carlos k11 al 16	Material en buenas condiciones

Tabla 10 Rasante en material granular.

ASPHAL	RASANTE EN ROCA									
RECORRIDO ASTE S.A.S Y AIM S.A.S	RECORRIDO CONTRATISTA E INTERVENTORÍA	FOTOGRAFÍAS	OBSERVACIONES							
K7+250 - K7+300; K8+300 - K9+890	K7+245 - K7+310; K8+300 - K9+900		Material en óptimas condiciones							
K13+410 - K13+660; K14+790 - K15+000	K13+400 - K13+650; K14+780 - K15+020		Material en óptimas condiciones							
K15+100 - K15+300; K15+450 - K15+870	K15+150 - K15+300; K15+500 - K15+850	18/06/70/29 9/8/41 a. m. 314* W. Via San Carlos X.14 al 16	Material en óptimas condiciones							

Tabla 11 Rasante en roca.

ASPHAL	TECHNOLOGY	RASANTE EN ESTADO CRÍTICO	
RECORRIDO	RECORRIDO		
ASTE S.A.S Y	CONTRATISTA E	FOTOGRAFÍAS	OBSERVACIONES
AIM S.A.S	INTERVENTORÍA		
No Aplica	K15+400	18/06/2022 9:31-44 s m. 323 NW. Via San Carlos ki 5+400 18/06/2022 9:31-12 a. m. 332 NW. Via San Carlos ki 5+400	Tramos de mejoramiento con roca (Tramos ajustados según recorrido de campo)
No Aplica	K15+400 Y K14+570	18/06/2022 9/32/01 a. m 18/06/2022 9/32/01 a. m 345 N V/a San Carlos k/15 +4/00	Tramos de mejoramiento con roca (Tramos ajustados según recorrido de campo)
No Aplica	K14+390 Y K15+400	18/06/2022 9:53:6 a. m 288' W Via San Carlos k14 +350 Via San Carlos k15 +400	Tramos de mejoramiento con roca (Tramos ajustados según recorrido de campo)

Tabla 12 Puntos críticos

			RELACIÓN DIFE	RENTES CBRS		
Al	BS	APIQUE	CBR GOBERNACION (%)	CBR ASTE SUBRASANTE (%)	CBR AIM SUBRASANTE (%)	CBR AIM MATERIAL GRANULAR EXISTENTE (%)
K6+591	K6+550	1	5,99			
K6+850	K6+800	2	4,50	18,25	14,34	85
	K7+050	3	7,55			
K7+100	K7+300	4	6,02		5,59	
	K7+550	5	9,05			
K7+600	K7+800	6	6,93		5,36	41
	K8+050	7	6,91			
	K8+300	8	8,15			
K8+350	K8+550	9	8,64	10,67	18,76	
	K8+800	10	7,52			
K8+850	K9+050	11	9,73		7,82	
	K9+300	12	6,75			
	K9+550	13	9,48			
	K9+800	14	6,7			
	K10+050	15	6,2			
K10+350	K10+300	16	7,16	9,36	5,01	41
	K10+550	17	8,47			
	K10+800	18	8,38			
	K11+050	19	8,01			
K11+350	K11+300	20	5,16		4,88	
	K11+550	21	5,47			
	K11+800	22	8,2			
	K12+050	23	6,94			
K12+350	K12+300	24	9,02	7,86	4,8	
	K12+550	25	9,21			
	K12+800	26	4,6			19
	K13+050	27	9,7			
K13+350	K13+300	28	7,2		2,91	70
	K13+550	29	7,03		·	
	K13+800	30	23,2			
	K14+050	31	9,95			
K14+350	K14+300	32	6,7	5,33	17,13	
	K14+550	33	6,56			
	K14+800	34	10,3			
	K15+050	35	7,62			
K15+370	K15+300	36	7,63		26,05	70
K15+850	K15+550	37	8,38	1,07	3,46	
K15+990	K15+800	38	8,48		7,65	
K16+004	K16+050	39	8,47			

Tabla 13 Relación CBRS.

Via Granada - San Carlos			
Rasante en material granular (Mate			
Abscisa Inicial	Abscisa Final	Longitud (m)	
K6 + 591	k7+245	654	
K7 + 310	K8+300	990	
K9+900	K10+150	250	
K10+570	K12+270	1700	
K14+570	K14+780	210	
K15+020	K15+150	130	
K15-430	K15+500	70	
K15+850	K16+004	154	
Total		4158	44,17%
Rasante en Roca			
Abscisa Inicial	Abscisa Final	Longitud (m)	
k7+245	k7+310	65	
k8+300	k9+900	1600	
k13+400	k13+650	250	
k14+780	k15+020	240	
k15+150	k15+300	150	
k15+500	k15+850	350	
Total		2655	28,21%
Tramo de mejoramiento con roca (Tramos ajustados según	recorrido de campo)	
k10+150	k10+570	420	
k12+270	k13+400	1130	
k13+650	k14+120	470	
k14+120	k14+190	70	
K14+250	K14+570	320	
k15+300	k15+430	130	
Total		2540	26,98%
Longitud Total		9353	m
Longitud de aproches puente		60	m
Longitud Total Proyecto		9413	m

Vía Granada - San Carlos. Subrasante en material granular (Registro In Situ ASTE Y AIM)						
Abscisa Inicial	Abscisa Final	Abscisa Final Longitud (m)				
K6 + 591	k8+300		1709			
k8+300	k10+580		2280			
K10+580	K12+270		1690			
K12+270	K14+570		2300			
K14+570	K15+430		860			
k15+430	k16+004		574			
Longitud Total (metros)			9413			

Tabla 14 Discriminación de longitudes de rasante según material (Recorrido entre contratista e interventoría)

Dadas las tablas anteriores y las diferentes alternativas del diseño de las estructuras del pavimento expuestas en este informe, es importante mencionar que se contemplan los tramos de roca que se encontraron en el recorrido efectuado por el contratista y la interventoría del proyecto como una unidad de soporte variable, que en el efecto de cálculos se determina con los datos establecido de CBR y metodologías de diseño, toda vez que se realizó su respectiva evaluación de los efectos de punzonamiento frente a la estructura antes descrita.

ANALISIS Y RECOMENDACIONES

La vía se encuentra consolidada y estable a pesar de la fuerte oleada invernal que ha azotado la zona. Por lo cual se recomienda conservar la capa actual de material granular existente.

Se presenta gran presencia de agua en la totalidad de la vía, por lo que se recomienda pensar en que la alternativa contemple materiales granulares estabilizados con el fin de prevenir el lavado de finos en la estructura a mediano plazo

Se presenta zonas consolidadas en roca, por lo que se recomienda sobreponer la estructura (alternativa) con el fin de eliminar el punzonamiento en la carpeta asfáltica.

Se evidencia en gran parte que la rasante de rodadura actual se encuentra mas baja que las zonas laterales, por lo que se recomienda no retirar la estructura existente con el fin de prevenir empozamientos o drenajes superficiales que puedan afectar la vía a corto plazo.

Se evidencia diferencia en las condiciones de diseño entregadas, por lo que recomendamos dicha alternativa que se encuentra ajustada a las condiciones actuales del proyecto.

VENTAJAS

_ Menores tiempo de ejecución	_ Menores cierres de via
_ Menor permeabilidad a la erosión	_ Disminución costos transporte
_ Optimización de materiales locales	_ Menor impacto ambiental

- _ Mayor generación de empleo en la zona
- _ Menor impacto social
- _ Menor contaminación ambiental en huella de carbono

El módulo de elasticidad, cuyo valor es de 500MPa o 5000KG/cm2, es un valor adecuado con el que se han realizado varios diseños para la gobernación de Antioquia, cumpliendo siempre que se tenga un material granular (existente o de material granular) el cual, a los siete (7) días de maduración del material estabilizado con cemento, cumpla con una resistencia a la compresión inconfinada de 2.1MPa.

Por otra parte, según el manual de estabilización de suelos español, los módulos de elasticidad que se pueden obtener en una mezcla de suelo – cemento, están por valores de 200MPa a 2000MPa y, según las condiciones del material granular que se piensa estabilizar o tratar con cemento, se encuentra en una parte entre un material o un suelo EST2 y un EST3, que equivale a nuestras especificaciones, como materiales para suelos seleccionados para corona de terraplén (artículo 220-21) o un material granular (artículo 311-21).

En la siguiente figura se muestra los valores de módulos de elasticidad recomendados por el manual de estabilización de suelos con cal o cemento del Instituto Español del Cemento y sus aplicaciones, capitulo 3, pagina 57.

S-EST1 200 MPa

S-EST2 300 MPa

S-EST3 2000 MPa

Fuente: Manual de estabilización de suelos Español

Tabla 2.3 - Prescripciones de los suelos a utilizar en estabilizaciones

			S-EST1	S-EST2	S-EST3
Tamaño máximo		80 mm			
Granulometría	Suelo con cal	Pase 63 µm	≥ 15		
	Suelo con cemento	Pase 63 µm	< 50		< 35
		Pase 2 mm	> 20		
Plasticidad	Suelo con cal	IP	≥ 12	≥ 12 y ≤ 40	
	Suelo con cemento	LL	≤ 40		40
		IP	≤ 15		
% Materia orgánica		< 2	< 1		
% Sulfatos solubles		< 1			

Fuente: Manual de estabilización de suelos Español

La tabla anterior, muestra las características mínimas para los suelos o materiales a tartar con cemento. Esta tabla también fue tomada del manual de estabilización de suelos con cal o cemento del Instituto Español del Cemento y sus aplicaciones, capitulo 2, pagina 18.

Se empleó un módulo para diseño, de 500MPa para tener en cuenta posibles errores humanos en la dosificación, mezcla y curado en el sitio de obra y así mismo, para no tener una mezcla demasiado rígida elásticamente, que requiera de cortes para dilatación.

8 BIBLIOGRAFIA.

- AMERICAN ASSOCIATION STATE HIGHWAY AND TRANSPORTATION OFFIALS (AASHTO). Norma AASHTO T- 193. California Bearing Ratio.
- INSTITUTO NACIONAL DE VIAS. Normas para ensayos de Carreteras Bogotá D.C. [en línea]: El instituto, 2015. Disponible en <www.invias.gov.co>
- HOLTZ, Robert, KOVACS, William. An Intoduction to Geotechnical Engeineering. 1981
- HUANG, Yang. "Pavement Análisis and Design", 1993
- AASHTO. "Guide for Design of pavement structures". 1993
- INSTITUTO NACIONAL DE VÍAS, "Manual de diseño de pavimentos asfálticos en vías con bajos volúmenes de tránsito.
- Normas INVIAS artículo 300.